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We develop a multi-length-scale (multifractal) theory for the effect of rock 
heterogeneity on the growth of the mixing layer of the flow of a passive tracer 
through porous media. The multifractal exponent of the size of the mixing layer 
is determined analytically from the statistical properties of a random velocity 
(permeability) field. The anomalous diffusion of the mixing layer can occur both 
on finite and on asymptotic length scales. 
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1. i N T R O D U C T I O N  

Anomalous (non-Fickian) diffusive mixing induced by a random velocity 
field has considerable interest both for oil recovery processes and 
groundwater ecology. Multi-length-scale rock heterogeneity is instrumental 
in the generation of anomalous diffusion; it is a primary factor limiting 
total oil recovery in enhanced oil recovery processes, (23) and it leads to a 
rapid growth rate for contaminant plumes. Heterogeneity-induced diffusive 
mixing has been studied from a number of points of view, including multi- 
scale asymptotic expansions, (3~ hierarchical random field models, (15'261 
homogenization, weak limits and compensated compactness, (1'29) the 
renormalization group method, (2'8,16) and Monte Carlo simulation. (9'28) 
For other treatments of diffusion induced by random fields see, e.g., refs. 3-7, 
13, 14, 17-25, and 27). The present work goes beyond previous studies in 
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its analysis of multiple-length-scale anomalous (non-Fickian) and transient 
diffusive behavior. 

Glimm and Sharp (15) established a random field model to study the 
effect of rock heterogeneity on the exponent of the mixing length. This 
model predicts that for a fractal permeability field, i.e., a permeability field 
whose covariance function obeys a pure power law, the diffusive mixing 
layer can be anomalous when the permeability field correlation decays 
slowly. Numerical simulations of tracer flow in two dimensions have 
confirmed their prediction. (1~12) The main result of this paper is a multi- 
length-scale theory which generalizes the results of ref. (15) to a multi- 
fractal, anisotropic random velocity field. We find: the mixing exponent at 
length scale l is expressed as an average over all length scales smaller than 
l, weighted by the velocity field correlation function. In case the exponent 
of the velocity correlation is slowly varying as a function of length scale, it 
determines the mixing length exponent on that length scale by a simple 
formula. Our results also show that normal diffusion can be achieved 
asymptotically if and only if the diffusion coefficient converges. 

Let f ( l )  be a positive statistical quantity measured at a length scale l 
from a random field. The exponent of f is defined as 

exponent of f ( 1 ) - d l n  f-(l) 
a lnl 

(1.1) 

A fractal field is the special case in which d In f( l) /d In I = const. Otherwise 
it is multifractal. A velocity field, determined from a random permeability 
field, is also random and has length scale dependence. When two fluid 
phases flow through such a random velocity field, a mixing layer is 
developed at the interface between the phases. The mixing length, defined 
as the size of the mixing layer in the direction of the flow, increases as 
time evolves. We determine the growth of the mixing layer from the 
rock heterogeneity. Both experimental and field data show a striking 
phenomenon, known as "the scale effect": the dispersivity increases 
systematically (but perhaps not as a pure power law) with length 
scale. (13'24) Our theory explains this phenomenon. 

Multi-length-scale rock heterogeneity, microscopic (molecular) 
diffusion, and fluid instabilities all contribute to the mixing process. In 
order to study the effects due to heterogeneity alone, we consider unit 
mobility miscible displacement (tracer or tagged flow). Tracer flow is a 
common case for groundwater ecology. We consider incompressible flow in 
d dimensions. The motion of the fluids is governed by a linear transport 
equation, 

s , + v . V s = 0  (1.2) 
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where s is the saturation value of the fluid, s = 1 for tagged fluid and s = 0 
for untagged fluid. V is the spatial gradient operator. We assume the 
velocity field v is stationary, random, and Gaussian. Therefore it is a 
function of the spatial variables only and the statistical behavior of the field 
is determined uniquely by the mean value and the two-point covariance 
function of the field. More fundamentally, the velocity field v is determined 
by the random permeability tensor K from Darcy's law and the condition 
of incompressibility 

K 
v=  - z - V P  and V . v = 0  (1.3) 

# 

Here # is the fluid viscosity and P is the pressure. 
Let (s(t, x) )  be the saturation value after ensemble average of the 

random velocity v. Applying a systematic expansion of the solution in 
terms of the fluctuation of the random velocity field, one can show that 
(s(t, x) )  satisfies the convection-diffusion equation, 

0 (s(t, x))  
8t +v~176 (1.4) 

where D(v0t)=S~ (SV(Vot) SV(Vot'))dt' is a diffusion matrix, Vo= ( v )  is 
the ensemble-averaged velocity, and 6v = v -  ( v )  is a fluctuation about the 
average due to the rock heterogeneity and is a function of the spatial 
variables only for a stationary velocity field. The shape of the tracer 
interface at t = 0  is given by s(0, x). Equation (1.4) can also be derived 
from Taylor's Lagrangian theory of diffusion. (6) In the weak-heterogeneity 
limit, as we consider here, the term O(Sv 4) is negligible. Neuman and 
Zhang ~27) developed a quasilinear theory for the growth of the mixing layer 
based on Corrsin's hypothesis. For strong heterogeneity, see refs. 10-12 for 
numerical studies. Resummation of perturbation series and high-order 
expansions are discussed in refs. 22 and 25. 

In Section 2 we obtain an analytic expression for the growth of the 
mixing length, and show that the mixing layer is asymptotically anomalous 
when the correlation function decays slowly at large length scales. In 
Section 3, we study anomalous diffusion on finite length scales and an 
instantaneous fractal approximation. In Section 4, we show that to leading 
order, the asymptotic exponent of the correlation function of the 
permeability field determines whether the diffusion is asymptotically 
anomalous. 
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2. A S Y M P T O T I C A L L Y  N O R M A L  A N D  A N O M A L O U S  
D I F F U S I O N  

In this section, we determine the anomalous growth of the mixing 
layer induced by a random velocity field. For simplicity, we consider the 
initial mixing interface to be a hyperplane with its normal direction parallel 
to Vo. We choose Vo as the direction associated with the variable xl.  Let 
I1 = (r/, x2,..., xd) = (xl - rot, x2 ..... xd). Here r/ is the first component of q 
and Vo is the magnitude of Vo. The untagged (tagged) fluid is located 
initially in the region ~/> 0 (r/< 0). Then in the weak-heterogeneity limit, 
Eq. (1.4) becomes 

f2 (s(t, r / ) ) ,=  q(vor dr (s(t, rl))n . = o~(Vot ) (s(t, r l ) ) , ,  
(2.1) 

(s(0, q ) )  = s(0, n ) =  0(- ,7)  

Here q is the velocity correlation function in the direction of Xl, 0 is the 
Heaviside function, and 

~(Vot)= q(vo~) d~ (2.2) 

is the diffusion coefficient in the x I direction, i.e., the first diagonal element 
of a diffusion matrix. Equation (2.1) is the convection-diffusion equation 
which governs the growth of the mixing layer. 

The solution of Eq. (2.1) is 

1 / Xl--Vot \ 
(s(t, rl)) = ~erfc ~2-~-~)~2)  (2.3) 

where erfc(.) is the complimentary error function and 

w(t) = q(vo() cl( d( = ( t -  4) q(vo~) d( (2.4) 

Here Vor represents the distance which the mixing interface travels 
over the time period ~. We will suppress the coefficient v o in the argument 
of q for simplicity in the remaining formulas in this section and in the 
formulas of next section. In other words, we choose the units in such way 
that Vo = 1. 

The size of the mixing layer corresponds to the distance over which 
( s )  varies from a value close to 0 to a value close to 1. Equation (2.3) 
shows that the mixing length l(t) has the scaling 

l ( t )=  2[w(t)]i /2= 2 [f~ (t-~) q(~) d~] 1/2 (2.5) 
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We assume that the correlation function q is a positive, piecewise 
continuous function. Then from Eq. (2.5) l is a positive, continuous, and 
piecewise differentiable function. 

Any positive, piecewise differentiable function f( t)  can be expressed 
in a multifractal form, f ( t )=a( t ) t  b(`), where b( t )=d ln f ( t ) / d ln t  and 
lna(t)=ln f ( t ) - l n t d l n  f ( t ) /dlnt .  In the ln[l( t )]- ln( t)  plane, b(t) is 
the slope at Int. Therefore, the mixing length l(t) can be expressed as 

l(t) = c(t) t x') (2.6) 

Here 7(0 is the exponent of the mixing length l(t). From Eqs. (2.5) and 
(2.6) and the definition of Eq. (1.1), 7(t), the exponent of the mixing length 
and c(t) are given by 

d l n l ( t )  t dl(t) 1F 
7( t ) -  d l n ~ - )  d ~ - = 2  

L 

and 

ln c(t)= ln(2) + ~ ln [;] 

~'o ~.q(r d~ ] 
1 t ~ ~  j (2.7) 

]![ ( t - r  1 t~toq(r Int  

Equation (2.7) shows that the exponent 7(t) of the mixing length at length 
scale t depends on all length scales less than t and that the correlation 
function q(t) serves as a weight in the averaging process. This explains the 
dependence of the mixing length exponent on the flow history. 

When q is differentiable, the exponent of q, according to Eq. (1.1), is 
given by 

d In q(t) 
fi(t) - - -  (2.8) d l n t  

Let 2(t) = In q(t)/ln t, fi~ = lim,_ o~ flU) and 2~ = lira, ~ ~ )o(t). 

Lemrna 2.1. 
exists, then fl~ exists and fl~ = 2~. 

ProoL We first consider the case ) ~  v ~ 0: 

If q is differentiable at large length scales and if 2~ 

Here we have used l'H6spital's rule, since both 2(0 in t and In t diverge as 
l - - *  o0.  

For 2~ = 0, we define ~[(t) = 2(t) + 1; then lim, ~ ~ ~[(t) = 1. Replacing 
2 by ~ in the above proof for 2~ r  we will have #~ =0. 

2(t) In t d(2(t) in t) d(ln q(t)) 
2~ = lim 2 ( 0 =  lim - - -  lim lim - f l ~  

, ~  t ~  l n t  , ~  d( ln t )  , ~  d( ln t )  
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P r o p o s i t i o n  2.2. If flo~ exists, then 7~ exists. The asymptotic 
diffusion is normal when floo < - 1  and anomalous when - 1  ~< fl~. The 
asymptotic exponent of the mixing length is given by 

Proof. 

'~ oo = m a x  

Since 

~/~ ~q(~) d~ 
lira 
,~ o~ t ~ q(~) d~ 

= 0  for 2o~< - 1  

(which is equivalent to /3~ < - 1  from Lemma 2.1), we have 

~ = � 8 9  for floo < - 1  (2.10) 

This is normal diffusion. 
When - 1 ~ < 2 ~  (i.e., - l ~ < f i ~ ) ,  both ~o~q(~)d~ and t~oq(~)d~ 

diverge as t ~ ~ .  We apply l'H6spital's rule to obtain the limit 

lim ~ ~q(~) d~ limo~ 1 1 + fl~ when - 1 ~< rico 
,~t~'oq(~)d~ ~ l+l/(l+fl(t)) 2+flo~ 

Here we have used Eq. (2.8). Therefore we obtain the result 

7 o o = 1 + @  for - l ~ < f l ~  (2.11) 

The diffusion is anomalous in this case. 
Combining (2.10) and (2.11), Eq. (2.9) follows. 
Notice that, from Eq. (2.11), 7o~ = 1/2 for fl~ = -1 .  Therefore 7~ is a 

continuous function of rico. Here fl~ = - 1  is the critical point, joining the 
regime of normal diffusion to the regime of anomalous diffusion. At the 
critical point, S'o~q(~)d~ diverges linearly, and So q(~)dr diverges 
logarithmically. Therefore 7(t) approaches 1/2 at a rate (ln t) -1. The 
convergence to the asymptotic limit is the slowest at the critical point. 

The condition r i c o < - 1  is equivalent to the condition that the 
diffusion coefficient e(t) converges at large length scales. In this case, 
approaches a constant at large length scales. If floo > - 1 ,  e diverges at 
large length scales. The diffusion is asymptotically anomalous at the critical 
point f l ~ = - 1 ,  although l i m , ~ 7 ( t ) = l / 2 ,  since ~(t) diverges as ln t. 
Therefore we have the following criterion: 
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C o r o l l a r y  2.3. The diffusion is asymptotically Fickian if and only 
if the limit l im,~ ~ c~(t) converges. Otherwise it is anomalous. 

From the positivity of q, Eq. (2.2) implies that the diffusion coefficient 
c~(t) is a nondecreasing function of the length scale. It explains the observa- 
tion from experimental and field data that the dispersivity is an increasing 
function of length scale. In Fickian diffusion, the diffusion coefficient is a 
constant over all length scales. Therefore the correlation function q is 
proportional to a delta function at origin. This corresponds to a white 
noise random field 3v. 

3. M U L T I F R A C T A L  A N O M A L O U S  DIFFUSION 

Here we determine the behavior of the mixing layer on finite length 
scales from the properties of the velocity correlation function. We study the 
transient effect on different length scales and find the conditions which 
allow 7(0 to be determined from/~(t), the exponent of the velocity correla- 
tion function q(~). 

Proposit ion 3.1. 
The following properties of 7 can be determined from the proPerties 

of q: 

(a) 1/2~<7(t) for 0~< t <  oo. 

(b) If q is a fractal field, q(~) = c~ a, then 7(t) = max{ 1/2, 1 +/3/2} for 
0~<t<oo.  

(c) If q(~) is nonsingular at short length scales and q(0)4:0, then 
7(0) = 1. If q(~) diverges as c~ B, for ~ ~ 1, with p < 0, then 7(0) = 
max{ 1/2, 1 +/~/2}. 

(d) If q(~) is a nonincreasing (nondecreasing) function and 
lim~ ~ o ~q(~) = 0, then 7(t) ~< 1 (/> 1 ) for 0 ~< t < oe. 

(e) Let z(t)=27(t)-tq(t)/~(t ). Then 7(0 will increase (decrease) 
when z(t)< 1 (>  1). 7(t) is a stationary value when z(t)= 1. 

Proof. (a) follows from the positivity of q(~). (b) and (c) follow from 
Eq. (2.7) with the correspondingly stated properties of q(~). 

To prove (d), we consider the integral 

r( ) 
for the case in which q(~) is a nonincreasing function. The expression on 
the right-hand side of the equal sign is obtained by integration by parts. 
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This inequality is equivalent to ~ (q(r  ~'o q(r d~ <~ 1/2. From 
Eq. (2.7), we have 7(t) ~< 1. The proof for the case of nondecreasing q(~) is 
similar. 

By taking the derivative of Eq. (2.7) with respect to t and using the 
definitions given by Eqs. (2.2) and (2.7), the results of (e) follow. Therefore 
Proposition 3.1 holds. 

If the exponent fl of q varies slowly over some length scale t, we may 
expect the mixing growth rate 7(0 to approach the behavior of a fraetal 
field, if the fluid has been travelling on that length scale long enough. 
Furthermore, we may also expect that the slowly varying condition is not 
necessary for fl(t)< -1 ,  since for all fl(t)< - 1 ,  the asymptotic limit of 7(t) 
is the same i.e. 1. In fact when q(~) has rapid decay on certain length scales, 
the diffusion coefficient is approximately constant (increasing slowly) on 
those scales. Therefore, when either q decays rapidly or fl varies slowly, we 
may expect that the exponent of the mixing length approaches an 
asymptotic (fractal) limit: 7fr(t)= max{l/2, 1 + fl(t)/2}. We study such an 
instantaneous fractal field approximation and the transient effects below. 

We consider the case of rapidly decaying q first. For convenience, we 
introduce 

In(t) = r d~ (3.1) 

L e m m a  3.2. Let 7r, ,x=max{7(t)  "tl<~t<<.t2}.Then 

1 I1( / )  
7(/)~<X-+Tmax.g. tlo(t~ for tl<<.t<<,t 2 (3.2) 

Proof. Let R = Ii(t)/tlo(t). From Eq. (2.7) we have 

1 1 R 
~ ( t ) = z ( 1 - - R ~  2 ~ ~  

1 R 1 
~< ~-t- 2[1 _ max(R)]  = ~ + ~max R for tl<<,t<~t 2 

Proposit ion 3.3. If there exist positive constants c and 6 such that 
q(() ~< c( -1 6 for tl ~< ~ ~< t2, then there exist two constants cl and c 2 such 
that for 6 :~ l, and tm ~< t~< t2, 

1 t 6 7(t)<<.~+clt 1+c2 (3.3) 
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and for 6 = 1, and t I ~< t ~ t2, 

~(t)~�89 ~ + c 2 t - i l n t  (3.4) 

ProoL Consider the case 6 r i first. From Lemma 3.2 we have 

1 I~(t~) + ~r ~q(~) d~ 
~(t)~<5+~m~x t[Io(t~) + ~,~ q(~) d~] 

1 ~) max C 1 2 _~_ ~ [ / l ( t l  ) _jr_ ~ ( t l - -  --  [ 1 -  6)] 

1 ~ 2 7 ( t l ) -  1 ct~ -~ 
= ~_t_ 7max/1 J 1 1_ 27(t~) ( 1 - 6 ) I 0 ( t l i  t -  

C 
-[- ~max t ~ for 6 r  

(1 - 6 )  Io(t,) 

Therefore 

Cl= ))max tl F2~l(tl) - 1  Ctl~_ ] 
[_ 27(tl) (1 -- O) Io( t l ) j  

and 
C 

c2 = 7 .. . .  (1 - 6) Io(t 1 ) 

Following the same procedure with di = 1, we have 

C 
Cl~-~maxglF2~(ll)~ll_ 27(t~) c_ln t~]io(t~)j a n d  c2 ='~max ].0(/1 ) 

For the system to approach a normal diffusion limit, two conditions 
must be satisfied: (1) the decay of the correlation function must be faster 
than 1/t; (2) the transient effect induced from the history 0 ~< ~ ~< tl must be 
damped. The term C lt  -1 corresponds to diminishing the transient effect 
and the term c2t -~ represents the rate at which the system will approach 
the limit 7 = 1/2 if the transient effect is negligible. When 6~< 1 the 
convergence rate of ~ is dominated by the decay rate of the correlation 
function. When 6 > 1 the convergence rate of 7 is dominated by the damping 
of the transient effect. 

We study the exponent of the mixing length for slowly varying fi 
below. The approximation of 7 in this case depends on an approximate 
evaluation of the integrals Io(t) and Ii(t). 

Lemma 3.4. Let b be the maximum variation of the exponent of q 
over the range [tl,t2], b=max{lfl(~.)-fl(~')l" t~<~, ~'<~t2}. Let L( t )  
denote the approximate value of I,(t) from a fractal approximation to q in 
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the portion of the integration over the interval [tl ,  t]. Then, in the interval 
[ t l ,  t2], the relative error in I, is bounded by 

I.(t)-7_n(t ) b for /~(t)-r - ( n  + 1) (3.5) 
In(t) ~< In + 1 +/3(t)l 

with 

and 

with 

1 
L(0=Utl)+ n + 1 + fl(t) 

[ t  n+ lq( t ) - -  t7 + lq(tl)'] 

I . .(t)-•(t) 
" I ~ t )  ~ b ( l l n t l + l l n t ~ l )  for f lU)= - ( n +  1) (3.6) 

"in(t) =/ 'n(t l )  + t n+ lq(t) In t -  tl + lq(/1) In tl 

Proof of (3.5). 

I . ( t )=l . ( t l )+ ~' ~"q(~)d~=In(t,)+ ~' r B(Oq(~)d~ 
%1 Jtl 

Integration by parts on the portion (n + a(,) of the integrand yields 

Ut)=L(n+ 1 f,' n + 1 + fl( t)  1 [flU) - fl(#)] r162 d~ 

Therefore we have 

b f' 
I In( t ) -  L(t)l  <~ ln + l +13(t)l ~ ~nq(~) d~ (3.7) 

Dividing both sides of Eq. (3.7) by In(t), (3.5) follows. 
The proof of (3.6) is similar. 
Let e , ( t ) =  [In(t)--In(t)]/In(t) for n = 0 ,  1 be the relative error in a 

fractal approximation of the integrals Io and 11. From Lemma 3.4, In(t) 
can be expressed as 7,(t)= I,(tl)+ Fn(t)-Fn(tl), where 

or 

F,(~)=~"+'q(~)/[n+l+fl(~)] for f l ( t )vL-(n+l)  

F , ( r 1 6 2 1 6 2 1 6 2  for f l U ) = - ( n + l )  
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Let rn(t ) be the ratio rn( t )=[I~( t l ) -Fn(t~)] /Fn(t  ) for n = 0 ,  1. The 
relative error from the fractal approximation at length scale t is represented 
by G(t), and rn(t) represents the remaining transient effect at length scale t. 

Proposition 3.5. If q(t) is differentiable on It1, t2] and satisfies 
the conditions 

(a) max{l,  I1 +fl(t)t} len(t)t '~ 1, with - 1  ~<fl(t); and 

(b) there exists t', tt ~< t' < t2, such that Irn(t)l <~ 1 whenever t' ~< t ~< t2; 

then ?(t) = 1 + �89 + O(e(t) + r(t)) for t' ~< t ~< t2. 

Proof. Substituting the expressions of 7n(t) in Lemma 3.4 into 
Eq. (2.7) and applying Taylor's expansion with the conditions stated in 
(a) and (b), the result follows. The leading-order contribution from 
O(e(t) + r(t)) is given by 

[2 + fl(t)] [1 + fl(t)] [el(t) - eo(t) + q( t )  - ro(t)]/2 

The condition (a) represents the fact that the variation of fl(t) has to 
be slow enough to let fluids realize that the correlation function is 
approximately fractal at that length scale. Condition (b) represents the fact 
that the slowly varying condition must persist sufficiently long to diminish 
the transient effect. After time t', the transient effects are negligible. Since 
the asymptotic limit of r,(t) is zero, condition (b) can be satisfied when the 
range of slow variation is sufficiently large. 

Combining Propositions 3.3 and 3.5, we have following corollary. 

Corollary 3.6. If q(t) satisfies the rapid decay condition stated in 
Proposition 3.3 or the slowly varying condition stated in Proposition 3.5, 
then 

7(t) ~ ~rr(t) = max {~, 1 + ~ }  (3.8) 

The experimental data and field data (.3) indeed show that the diffusion 
is typically anomalous in the range from 10 cm to 1 kin. The data (13) on 
length scales larger than 1 km are too scattered to determine its asymptotic 
behavior. 

To illustrate anomalous difusion in a multifractal field, we consider a 
simple velocity correlation function 

q(x) = qo(1 + x/a)/~ (3.9) 

Here qo = q(0) is the variance of the velocity field, a is a characteristic 
length, and/3 is an asymptotic exponent. This model allows a simple inter- 

822/66/1-2-32 
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polation between the distinct behavior of the fluids at short and long length 
scales. By introducing a dimensionless length r = x/a, one can express the 
exponent of the mixing layer as 

1 "C(2 ~V /3)[(1JV'[) l + f l -  1] 
for f i e  --1, --2 

(1 + ~ ) 2 + ~ - ( 2 + f l ) t -  1 

1 z ln(1 + z) 
? ( t ) =  2 (1 +z)  ln(1 + z ) - r  for / 3 = - 1  (3.10) 

1 z 2 
for / ~ = - 2  

(1 + r ) [ r - l n ( 1  + r ) ]  

The diffusion coefficient can be expressed as 

~(t)= v~ l + f l  [(1 + t ) l + ~  

qo ln(1 + t )  

-17 for f l ~ - I  

for / 3 = - 1  

The exponent of q is given by fl(z)= fir/(1 + r). Then 

?fr(r) = max , 1 + 

(3.11) 

From Proposition 3.1, 7(t) has following properties: 7(0)= 1, 7(t)~< 1 
for fl~<0. Since fl~ =/3, we have 7o~ = max{l/2, 1 +/3?/2}. In Fig. 1 we show 
7 as a function of - f l  at different times, i.e., at different length scales. 
Figure 1 shows that ? converges to 1 +fl/2 for -1,.</3 and to 1/2 for 
fl < -1 .  At the critical point/3 = -1 ,  ? has the slowest rate of approach to 
its asymptotic limit. In Fig. 2, we compare the exact value ?(r) with the 
value of the instantaneous fractal exponent 

---- max ' +  } 

?(z) is shown as a solid curve and ?fr(t) as a dashed curve in Fig. 2. It 
shows that ?fr(t) agrees with 7(t) very well over all length scales for 
-0 .5  <fl~<0. The smaller fl is, the slower the variation of fl(t) is, and the 
better 7fr(v) agrees with 7(t). For fl ~< -0.5, 7fr(r) deviates from ?(t) on the 
intermediate length scales, In t ~ 1, while it still agrees with ?(t) very well 
at short and large length scales. At short and large length scales, the 
correlation function, Eq. (3.9), is approximately fractal. The transient effect 
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1.5 

"c=0 

lnz-  I0 / / z = / ln't = 5 lnz = 20 

0 
1 2 

-13 

Fig. 1. Plot of the exponent 7(~) of the mixing length vs. the asymptotic velocity exponent 
/~ at different times (length scales). Here the correlation function of the velocity field has a 
simple form q (z )=  qo(1 + ~)< In agreement with the general theory, ~,(0)= 1 for all values of 
/~ and 7:0 = max{ 1/2, 1 +/~/2}. The diffusion is anomalous  (7 > 1/2) at any finite length scales. 
The asymptotic diffusion is anomalous  when 1 ~</~, and normal when/~ < - 1. The critical 
point / ]  = - 1  has the slowest rate of approaching the asymptotic limit. 

1.5 

7& Y~r 

[3=0 

- - ~ - . . . ~ ~ ~  I~ = =25 
" ~  13 =-.s0 

13 = -1 .o  

-5 0 5 10 15 

lnz 

Fig. 2. Comparison of the exact exponent 7(z) and instantaneous fractal exponent 7rr(Z), 
respectively, for the mixing length growth plotted vs. In ~. Here 7(~) is shown as the solid 
curves and 7~r(T) as the dashed curves. The difference between the solid curves and the dashed 
curves indicates the variation of the /?(z) and the transient effect between short and large 
length scales. 
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Fig. 3. The dimensionless diffusion coefficient as a function of time for different values of// .  
The values o f / / a r e  evenly spaced from/3 = - 3  t o / / =  0 with an increment of 0.2. By comparing 
with Fig. 1, one can see that the asymptotic diffusion is anomalous  (normal) when the diffu- 
sion coefficient diverges (converges). 

at short length scales is negligible and the transient effect is diminished at 
sufficiently large length scales. In Fig. 3 we plot the dimensionless diffusion 
coefficient ~(~) = ~(Z)vo/qo as a function of ~ for different values of/3. This 
figure should be compared with Fig. 1. It shows that the diffusion 
coefficient diverges for asymptotically anomalous diffusion ( - 1  ~</~) and 
converges for asymptotically normal diffusion (/~ < -1 ) .  

4. ROCK HETEROGENEITY 

In this section we determine the asymptotic exponent of the mixing 
layer from the asymptotic exponent of the correlation function of rock 
permeability. Let g(x-x ' )= ( e l ( x ) ~ l ( x ' ) )  be the correlation function of 
the permeability field. Let p ( x ) =  d In g(x)/d in x be the exponent of g(x), 
and p~=l imx~p(x) .  Then ~=max{1/2,1+p~/2} for dimension 
greater or equal to 2. 

The permeability tensor is diagonalizable. Without losing generality, 
we choose our coordinate system to coincide with the principal axis. We 
express the permeability field as K =  Ko e~('). Here Ko is a constant tensor 
normalized so that e has mean zero and e(x) is a Gaussian random field. 
The ith entries in K 0 and ~ are ki and ei, respectively, which determine the 
permeability along the principal axis x~. We assume that the tracer flow is 
moving along one of the principal axes x~. 

Let G be the Green's function determined by the equation 
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V . ( K o V G ( x , x ' ) ) = k l  6 ( x - x ' ) ,  where 6 ( x - x ' )  is a delta function in d 
dimensions.  Let G ' =  OG/Oxi,  g '  = dg /d(vo t ) ,  and g " =  d2g /d (vo t )  2. Let �9 
denote  convolut ion.  

L e m m a  4.1 .  When  []e[[ < 1, the velocity field correlat ion function q 
is given by 

q ( ~ , ) = v Z [ g ( ~ ) - 2 ( G '  * g ' ) ( ~ ) + ( G ' * G '  * g " ) ( ~ ) ] + O ( e  4) (4.1) 

where ~ = Vo(t - t'). 

Proof .  By linearizing Eqs. (1.3) in terms of e and  evaluat ing the 
velocity correlat ion function in the direction of x l ,  the result follows. 

Proposition 4.2 .  To  leading order  in e, the asympto t ic  exponent  
of the mixing length is given by ?~  = m a x { I / 2 ,  1 + p ~ / 2 }  for d imension 
>_-2, where p ~  is the asympto t ic  exponent  of g. 

Proof .  In Eq. (4.1), the asympto t ic  decay rate of G' �9 G'  �9 g" is at 
least as fast as that  of G' �9 g'. Therefore  the asympto t ic  decay of Eq. (4.1) 
is determined by the slower of g and G ' *  g'. The  asympto t ic  decay of 
G'  �9 g '  is at least as fast as [G'] �9 [g'[ ,  which is determined by the slower 
one between I G'] and [g'l .  Now,  ]g'[ decays faster than g and [G'[ decays 
at least as fast as Ix[ 1 for dimension ) 2 .  The only possibility for 
- 1 < / ~  is - 1 < p ~ ,  Therefore/~o~ = P~  when - 1 < Po~. The  propos i t ion  
holds. 
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